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Motivation
• Matrix Multiplication and fast algorithms (e.g. Strassen) is a fundamental 

computation and building block in algorithm design.
• Classic Processor-Aware (PA) approaches may not utilize all processor 

effectively unless the processor number matches well the structure of 
algorithm. E.g.
• The Communication-Avoiding Parallel Strassen (CAPS) by Ballard et al. [5] 

requires p to be an exact power of 7. Lipshitz et al. [32] improved it to a multiple 
of 7 with no large prime factors, i.e. p = m * 7^x, where 1<=m<7 and 1 <= x are 
integers by a hybrid of Strassen and classic MM.

• Communication–Avoiding parallel Recursive rectangular Matrix Multiplication 
(CARMA) by Demmel et al. [20] assumes p is an exact power of 2, or any of p’s 
prime factor can be bounded by a small constant.

• Classic Processor-Oblivious (PO) and Cache-Oblivious MM algorithms 
achieve optimality either in time or space, but not both. E.g.
• CO2: O(n) depth, O(n^3/(B\sqrt{M|) + p n M/B) w.h.p.
• CO3: O(\log n) depth, O(n^3/B + p \log n M/B) w.h.p.





Our Contributions



Cost Models and Programming Model
• Parallel Performance Model:

• Work-span model, aka work-time model
• Views a parallel computation as a DAG. Each vertex stands for a computation 

and each edge some control or data dependency. Each arithmetic op is counted 
uniformly as an O(1) op.

• Only calculates total work (T_1) and critical-path length (T_\infty)
• Parallel running time : T_p = O(T_1 / p + T_\infty) w.h.p. [3]

• Memory Model
• Sequential cache complexity (Q_1) in the ideal cache model [22]
• Parallel cache complexity : Q_p = Q_1 + O(p T_\infty M / B) w.h.p. under RWS 

scheduler [1, 37]

• Programming Model:
• Nested Parallel Model, aka Fork-Join Model
• Parallel: a || b
• Serial: a ; b



Time Adaptive and Reductive (TAR) Algorithm
• Problems of CO2:

• It imposes more control dependency than 
necessary data dependency to keep the 
algorithm correct. E.g. all-to-all sync 
between the 2 parallel steps (8 sub-MMs) 
of CO2.

• The all-to-all sync separating the 2 parallel 
steps actually serializes all n muls targeting 
the same cell. However, muls by itself are 
independent of each other and should be 
parallelized, serialization only makes sense 
for the later adds.

• Our improvements:
• TAR to remove unnecessary control 

dependency from a critical path, parallelizes 
all muls and serializes only adds.



Time Adaptive and Reductive (TAR) Algorithm
• Memory Allocator:

• Space for base-case computation gets 
reused on each processor

• A task on base-case computation 
cannot block or be preempted.

• Theorem 1:
• The TAR-MM algorithm computes 

classic square MM of dimension n on a 
semiring in O(n)time, with O(n^2+p 
b^2) space, and optimal O(n^3/(B√M) 
+ n^2/B) cache misses, where b 
denotes the dimension of base case. If 
assuming b is some small constant, the 
space bound reduces to O(n^2+p).



Space Adaptive and Reductive (SAR) Algorithm
• Problems of CO3:

• It allocates space irrespective of the availability 
of processors, i.e. it is designed for an infinite 
number of processors, or proportional to T_1 
/ T_\infty.

• Our improvements:
• Generalization of ``busy-leaves”property: 

each depth of each processor can have only 
one copy of memory and will be reused 
across function calls.

• Lazy Allocation: allocate space iff it runs 
simultaneously on a different processor from 
the sub-MM updating the same output 
region.



Space Adaptive and Reductive (SAR) Algorithm
• Theorem 3. The SAR-MM 

algorithm computes general MM 
of dimension n on a semi-ring in 
optimal O(logn) time, 
O(p^{1/3}n^2) space, and optimal 
O(n^3/B√M + n^2/B) cache 
complexities, assuming p=o(n).



Space-Time Adaptive and Reductive (STAR) Algorithm

• The TAR algorithm remove muls from a 
critical path without using much more 
space, while the SAR algorithm reduces 
the space complexity without increasing 
the time complexity

• STAR = TAR + SAR
• Theorem 4. The STAR-MM algorithm 

computes the general MM of dimension 
n on a semi-ring in O(√plogn) time, 
optimal O(n^2) space, and optimal 
O(n^3/(B√M)+n^2/B) cache bounds, 
assuming p=o(n^2/log^2 n)

• Theorem 7.The STAR-MM-Strassen 
algorithm has an O(p^{1/2} logn) 
time, O(p^{0.09} n^ω0)work, 
optimal O(n^2) space, and 
O(p^{0.09}·n^ω0/(BM^{(1/2)ω0−1})
+ p^{1/2}·n^2/B) sequential cache 
complexities, where ω0=log_2 7

• Theorem 8. The STAR-Strassen 
algorithm has an optimal O(n^ω0)
work, optimal O(log n) time, near-
optimal O(n^ω0/(BM^{(1/2)ω0−1})
+ p^{(1/2)ω0−1} n^2 / B) cache and 
an O(p^{(1/2)ω0} n^2) space 
complexities, where ω0=log_2 7.



Experiments


